Advanced Data Mining
Find the useful information hidden in your data! This course surveys computer-intensive methods for inductive classification and estimation, drawn from statistics, machine learning, and data mining. Instructor John Elder will describe the key inner workings of leading algorithms, compare their merits, and briefly demonstrate their relative effectiveness on practical applications.
Classical statistical techniques, both linear and nonparametric, will be reviewed and then the ways in which these basic tools are modified and combined into powerful modern methods will be outlined. The course emphasizes practical advice and focuses on the essential techniques of resampling, visualization, and ensembles. Actual scientific and business examples will illustrate proven techniques employed by expert analysts. Along the way, relative strengths and distinctive properties of the leading commercial software products for data mining will be discussed.
This intensive short course provides a broad overview, drawing connections between major developments in the diverse fields that contribute to predictive analytics, including cutting-edge ways to mine text and graphical networks. Previous participants have found this "big picture" to be very useful for identifying techniques to use immediately, as well as approaches worthy of further exploration, for research or practical problem-solving.
Intended audience
Those who work with data and wish to understand and use recent developments in predictive analytics. At the conclusion of this course, you should be able to discern the basic strengths of competing methods and select the appropriate tools for your applications.
Course fee
The course fee is $1,050 per person and includes a complimentary copy of The Handbook of Statistical Analysis and Data Mining.
Testimonials
"Dr. Elder provided examples shedding light on complex concepts. He gave the big picture all along the way."
"Gave real practical insights from a practitioner's point of view."
"Finally someone told me how things are done, not just how great data mining is."
"Most valuable were the insights into the essence of various methods, their relative strengths and weaknesses, and the important open research areas."
"Very interesting, knowledgeable, and entertaining approach."
Instructor
Dr. John Elder founded Elder Research, America’s largest and most experienced analytics consultancy in 1995. With offices in Charlottesville, VA, Baltimore, MD, Raleigh, NC, and Washington, DC, they’ve solved hundreds of challenges for commercial and government clients by extracting actionable knowledge from all types of data. Dr. Elder co-authored three books—on practical data mining, ensembles, and text mining—two of which won “book of the year” awards. John has created data mining tools, was a discoverer of ensemble methods, chairs international conferences, and is a popular workshop and keynote speaker.